Finite element analysis of endodontically treated tooth restored with different posts under thermal and mechanical loading

Özkan ADIGÜZEL¹, Senem YİĞİT ÖZER¹, Emrullah BAHŞİ², İzzet YAVUZ³

¹ Assistant Professor, Dicle University, Faculty of Dentistry, Department of Endodontics, Diyarbakir, Turkey
² Assistant Professor, Dicle University, Faculty of Dentistry, Department of Restorative Dentistry, Diyarbakir, Turkey
³ Associate Professor, Dicle University, Faculty of Dentistry, Department of Pedodontics, Diyarbakir, Turkey

Abstract

Aim: This study compared the stress distributions of endodontically treated tooth restored with carbon and titanium post under thermal and mechanical loading conditions.

Methodology: A 3-dimensional finite element model was created to represent in a labiolinguinal cross-sectional view of an endodontically treated maxillary central incisor tooth with its supporting structures. It was modified according to two post systems with different physical properties consisting titanium, and carbon fiber. Stress distribution and stress values were then calculated by considering the three dimensional von Mises stress criteria.

Results: A 100-N static vertical occlusal load was applied on the node at the center of occlusal surface of the tooth. The von Mises stress values for carbon post model was on the coronal third and the cervical area of the root in the range of 436,16 and 3,59 MPa, for titanium post model was 590,55 and 3,05 MPa. Thermal stress values for carbon post model showed that maximum stress concentrations were noted on the coronal third and the top of the post area of the root in the range of 509,94 and 6,38 MPa. Titanium post model showed that maximum stress concentrations were noted on the coronal third and top of the post area of the root in the range of 1165,06 and 3,06 MPa.

Conclusion: This study shows that the titanium post yields larger stresses than the carbon post under thermal conditions.

(Int Dent Res 2011;3:75-80)

Introduction

Endodontically treated teeth are usually weakened as a result of dental hard tissue structure loss due to decay, removal of previous and older restorations and root canal treatment procedure. To prevent further destruction of these teeth, post-and-cores are frequently used to restore endodontically treated teeth (1, 2). Traditionally, posts were made of metal, such as cast nickel–chromium (NiCr), prefabricated stainless steel and titanium. Due to their good physical properties, these three metals were shown to be predictable and successful post materials (3).

Generally cast metal dowel and core were used but recently there is an increasing trend towards the use of fiber dowel systems (4). Recently, the advance of materials and technology, in addition to the post systems, several new post materials have been introduced in accordance with elevated clinical requirements non-metal post and core systems, including carbon fiber post system, glass fiber post
system and quartz fiber post system (5, 6, 7, 8). Prefabricated posts are either metallic posts such as stainless steel, titanium alloy and metal posts, which have been luted with zinc phosphate cement, or non-metallic posts such as posts of zirconia and carbon fiber or glass fiber reinforced resin composite, which are adhesively bonded in the root canal system (9). Fiber dowels provide a more esthetic result than the metallic dowels. They have a modulus of elasticity similar to dentin structure, thus reducing the stress areas at the dowel dentin interface (10). Carbon fiber posts have modulus of elasticity, which is nearly identical to that of dentine and reported to cause less stress in the tooth and root fractures.

The oral environment is subjected to thermal stimulant from hot and cold foods and beverages (11). Palmer et al determined the maximum and minimum temperatures for hot and cold liquids by using an intraoral digital thermometer probe in which reported temperature extremes that ranged from 0°C to 67°C (12). Thermal conductivity and thermal expansion of nonmetallic restorative materials, metal, and dentin are significantly different (12). With rapid improvements and developments of computer technology, the finite element method (FEM) which has been shown to be a useful tool is a powerful numerical method for solving the differential equations (13, 14). Design and Finite Element Method methodologies play an important role in investigations of clinical and biomechanical situations in different dental fields. The computer program allowed the calculations of stresses, strains, and deformations in discretely shaped 3D finite element model representing a structure under static loading on tooth-restoration complex (15, 16).

The aim of this study was to evaluate and compare the stress distributions of endodontically treated tooth restored with carbon and titanium post under thermal and mechanical loading conditions.

Materials and Methods

A 3-dimensional finite element model was created to represent an endodontically treated maxillary central incisor tooth with its supporting structures. The model contained a simulated periodontal ligament (PDL) and alveolar bone structure (Fig. 1). The root canal was assumed to have been shaped to accommodate a commercially available fiber post.

Figure 1. Three-dimensional finite element model and illustration of materials.

All of the materials were assumed to be homogenous, isotropic and linear elastic. Mechanics and thermal properties of materials (Young’s modulus (E) and Poisson’s ratio (μ)) were assigned according to literature data and given in Table 1.

One finite element model was investigated to evaluate how the different occlusal loads changed the stress distribution:

Model: A 100-N static vertical occlusal load was applied on the node at the center of occlusal surface of the tooth (Figure 2a and 3a). Rhinoceros 4.0 (3670 Woodland Park Ave N, Seattle, WA 98103 USA) and Algor Fempro (ALGOR, Inc. 150 Beta Drive Pittsburgh, PA 15238-2932 USA) softwares were used for the modelling and stress analysis. Stress distribution and stress values were then calculated by considering the three dimensional von Mises stress criteria.

The thermal load applied to the 3D tooth model, having an initial temperature of 0 °C, simulated the draught of a hot liquid (65 °C) (Figure 2b and 3b). Thermal stress values were measured after 5 seconds.

Figure 2a. Carbon post model
Results

The values of stress seen at the middle third of the labial aspect of the root surface. On the contrary, the minimum values were noticed at level of both the apical portion of the post and the root apex. Assessments were made established on the color patterns in Figures 2a, 2b, 3a and 3b where warm colors denote higher stresses.

Results were presented by considering Von Mises criteria and calculated numerical data were transformed into color graphics to better visualize mechanical stresses in the models. All stress values were indicated in megapascals (MPa).

The analysis of the von Mises stress values for carbon post model showed that maximum stress concentrations were noted on the coronal third and top of the post area of the root in the range of 436.16 and 3.59 MPa. Titanium post model showed that maximum stress concentrations were noted on the coronal third and top of the post area of the root in the range of 590.55 and 3.05 MPa. Thermal stress values for carbon post model showed that maximum stress concentrations were noted on the coronal third and the top of the post area of the root in the range of 509.94 and 6.38 MPa. Titanium post model showed that maximum stress concentrations were noted on the coronal third and top of the post area of the root in the range of 1165.06 and 3.06 MPa.
TABLE 1. The mechanical and thermal properties of the materials

<table>
<thead>
<tr>
<th>Material/Component</th>
<th>Elastic Modulus (MPa)</th>
<th>Poisson Raito</th>
<th>Thermal expansion (10–6/°C)</th>
<th>Specific heat (103 J/kg)</th>
<th>Thermal conductivity [J/(mm·s·°C)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cortical bone (11, 17, 24)</td>
<td>13.700</td>
<td>0.30</td>
<td>10</td>
<td>0.44</td>
<td>0.5868</td>
</tr>
<tr>
<td>Cancellous bone (11, 17, 24)</td>
<td>1.370</td>
<td>0.30</td>
<td>10</td>
<td>0.44</td>
<td>0.5868</td>
</tr>
<tr>
<td>Dentin (11, 18, 19, 24)</td>
<td>18.600</td>
<td>0.31</td>
<td>11.4</td>
<td>0.588</td>
<td>0.15</td>
</tr>
<tr>
<td>Ligament (11, 20, 24)</td>
<td>68.9</td>
<td>0.45</td>
<td>4.1</td>
<td>0.36</td>
<td>0.5</td>
</tr>
<tr>
<td>Gingiva (11, 13, 24)</td>
<td>3</td>
<td>0.45</td>
<td>4.1</td>
<td>0.36</td>
<td>0.5</td>
</tr>
<tr>
<td>Gutta-percha (11, 17, 24)</td>
<td>0.69</td>
<td>0.45</td>
<td>54.9</td>
<td>0.22</td>
<td>0.48</td>
</tr>
<tr>
<td>Adhesive cement (Panavia,</td>
<td>18.600</td>
<td>0.28</td>
<td>30</td>
<td>0.197</td>
<td>0.976</td>
</tr>
<tr>
<td>Kuraray, Japan) (21, 24)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Composite core (Clearfil</td>
<td>18.600</td>
<td>0.26</td>
<td>39.4</td>
<td>0.2</td>
<td>1.0878</td>
</tr>
<tr>
<td>Photo Core, Kuraray, Japan)</td>
<td>(24)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nikel-krom (11, 22, 24)</td>
<td>200.000</td>
<td>0.33</td>
<td>14.3</td>
<td>0.11</td>
<td>66.944</td>
</tr>
<tr>
<td>Porcelain crown (11, 19, 23,</td>
<td>68.900</td>
<td>0.28</td>
<td>13.1</td>
<td>0.25</td>
<td>0.754</td>
</tr>
<tr>
<td>24)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon post (11, 21, 24)</td>
<td>118.000</td>
<td>0.27</td>
<td>2.2</td>
<td>0.3</td>
<td>6.276</td>
</tr>
<tr>
<td>Titanium post (11, 13, 24)</td>
<td>112.000</td>
<td>0.33</td>
<td>11.9</td>
<td>0.54</td>
<td>21.9</td>
</tr>
</tbody>
</table>

* Information from company

Discussion

Destructive mechanical tests, such as fracture tests, are important for biomechanical analysis of tooth and dental restorative materials, as they enhance understanding of the behaviour of teeth in high loading situations. However, these tests have limited capacity to clarify the stress–strain relationship in the tooth-restoration complex (25, 26). The use of nondestructive tests, such as strain gauge tests (27), and finite element analysis (FEA) (28, 29) is more suitable for understanding the failure characteristics of the restorative procedures (30, 31). Several studies have made comparative investigations using only FEA (21, 29, 30, 31), however, this methodology is more representative when associated with destructive tests (32), or with non-destructive assays such as the strain gauge test (26, 33).

Valid FE analyses have clarified how static stresses are distributed within the dental material and the tooth tissues. Restoration of endodontically treated teeth has become an important aspect of dental practice that involves a range of treatment options of variable complexity. Recently, post and core restorations are the option of choice for endodontically treated teeth, but it may makes teeth fragile and more susceptible to fracture (34). The present study compared the stress distributions of carbon and titanium post systems under thermal and mechanical loading conditions. According to the results of this study, both mechanical properties and thermal conditions of the post material affected stress distribution.

Glass and carbon posts show high fatigue and tensile strength, and they have a Young’s modulus comparable to dentin (17). Under the vertical static loads, teeth restored with fiber posts showed significantly stronger than those with metallic posts. Hot and cold liquids cause thermal stress over the time. This phenomenon is very important and needs to be investigated. Hot liquid caused more thermal stresses when titanium was used. Therefore, from
these results it can be concluded that carbon post shows better behaviour than titanium when hot liquid is used. Titanium post has more thermal stress than carbon posts.

According to the results of the present study, the mechanical properties and design of the of the post material, and the nature of the material from which the post and core are made are very important to the distribution of stress. Finite-element analysis (FEA) has been shown to be a useful technique the analysis of stress distributions.

Conclusion

Within the limitation of this study, it can be concluded that the thermal and physical properties of posts were important on stress distributions in post and core applications. Our study shows that the titanium post yields larger stresses than the carbon post under thermal conditions.

Acknowledgments

The authors deny any conflicts of interest related to this study.

References

21. Lanza A, Aversa R, Rengo S, Apicella D, Apicella A. 3D FEA of cemented steel, glass and carbon...